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Abstract—Recent1,2 NASA mission failures (e.g., Mars 
Polar Lander and Mars Orbiter) illustrate the importance of 
having an efficient verification and validation process for 
such systems. One software error, as simple as it may be, 
can cause the loss of an expensive mission, or lead to budget 
overruns and crunched schedules. Unfortunately, traditional 
verification methods cannot guarantee the absence of errors 
in software systems. Therefore, we have developed the CGS 
static program analysis tool, which can exhaustively analyze 
large C programs. CGS analyzes the source code and 
identifies statements in which arrays are accessed out of 
bounds, or, pointers are used outside the memory region 
they should address. This paper gives a high-level 
description of CGS and its theoretical foundations. It also 
reports on the use of CGS on real NASA software systems 
used in Mars missions (from Mars PathFinder to Mars 
Exploration Rover) and on the International Space Station. 
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1. INTRODUCTION 

Recent NASA mission failures (e.g., Mars Polar Lander and 
Mars Orbiter) illustrate the difficulty of building embedded 
software systems for space exploration and the importance 
of having an efficient verification and validation (V&V) 
process for such systems. One software error, as simple as it 
may be, can cause the loss of an expensive mission ($250 
millions at least for a mission to Mars), or lead to budget 
overruns and crunched schedules. For example, the loss of 
both spacecrafts in the Mars Surveyor 98 (the lander and the 
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orbiter) mission cost $328 millions to NASA; valuable 
scientific data could not be obtained either.  

Unfortunately, traditional verification methods (such as 
testing) cannot guarantee the absence of errors in software 
systems. Therefore, it is important to build verification tools 
that exhaustively check for as many classes of errors as 
possible. Static program analysis is a verification technique 
that identifies faults, or certifies the absence of faults, in 
software without having to execute the program. Using the 
formal semantic of the programming language (C in our 
case), this technique analyses the source code of a program 
looking for faults of a certain type. We have developed a 
static program analysis tool, called C Global Surveyor 
(CGS), which can analyze large C programs for embedded 
software systems. CGS analyzes the source code of C 
programs and identifies statements in which arrays are 
accessed out of bounds, or, pointers are used outside the 
memory region they should address. CGS does its 
verification using static analysis techniques based on the 
theory of Abstract Interpretation. Even though the analysis 
predicts what will happen at runtime, it is performed at 
compile time. Therefore, it does not require executing the 
program and providing input test data. Moreover, CGS 
analysis is conservative in the sense that it performs all 
checks necessary to find all errors of the same type (in our 
case, all out-of-bound array accesses).  

This paper gives a high-level description of the architecture 
of CGS and the theoretical foundations (Abstract 
Interpretation) supporting the correctness of the analysis. 
More importantly, we report on the use of CGS on real 
NASA software systems. We have analyzed flight software 
used in Mars missions (from Mars PathFinder to Mars 
Exploration Rover) as well as software used to control 
experiments on the International Space Station. The sizes of 
the software systems analyzed range from 40 to 600 KLOCs. 
The analysis times range from 5 minutes to 24 hours on PC 
platforms running Linux. The analyses did not require any 
modifications of the original source code. 



 2 

2. STATIC ANALYSIS FOR V&V 

The goal of static program analysis is to assess properties of 
a program without executing the program. Static analysis has 
its roots in compiler optimization. Most compilers do not 
perform verification beyond type checking and superficial 
syntactic checks because they focus on getting quick 
feedback to the code developer. However, they can rely on 
fairly sophisticated analyses for code optimization because 
the user is willing to pay a penalty (in terms of compilation 
time) and obtain optimized code. In other words, it is fine to 
spend a little more time optimizing the code (which is done 
once) if it makes the numerous executions run faster. Static 
program analysis pushes the idea further by using even more 
sophisticated analyses to find, at compile-time, bugs that can 
happen at run-time. The rationale is that it is worth spending 
time analyzing the software if it cuts down on manual 
testing. This is what makes static analysis attractive to the 
verification community. 

Several techniques can be used to perform static analysis. 
Theorem proving, data flow analysis [12], constraint solving 
[1], and abstract interpretation [4,5] are among the most 
popular. We could devote an entire article, if not several, to 
the comparison of these techniques. However, in this paper, 
we only focus on one technique, abstract interpretation, and 
show its applicability to real embedded software. 

The theory of Abstract Interpretation pioneered by Patrick 
and Radhia Cousot in the mid 70's provides algorithms for 
building program analyzers which can detect all runtime 
errors by exploring the text of the program [4,5]. The 
program is not executed and no test case is needed. A 
program analyzer based on Abstract Interpretation is a kind 
of theorem prover that infers properties about the execution 
of the program from its text (the source code) and a formal 
specification of the semantics of the language (which is built 
in the analyzer). The fundamental result of Abstract 
Interpretation is that program analyzers obtained by 
following the formal framework defined by Patrick and 
Radhia Cousot are guaranteed to cover all possible 
execution paths. 

Runtime errors are errors that cause exceptions at runtime. 
Typically, in C, either they result in creating a core dump or 
they cause data corruption that may cause crashes. In this 
study we mostly looked for the following runtime errors: 

(1) Access to un-initialized variables, i.e., variables that 
are used even though they have not yet been assigned a 
value. 

(2) Access to un-initialized pointers, i.e., pointers that are 
de-referenced (i.e., attempt to read from or write to the 
memory region pointed by the pointer) without having 
been assigned to a memory region. 

(3) Out-of-bound array access, e.g., a[10]  where a is an 
array of size less or equal to 10 (assuming that 
indexing starts at 0). 

(4) Arithmetic underflow/overflow, e.g., the program does 
not take into account that the storage of a computed 
value might take more bits than is allocated for the 
variable holding the value. 

(5) Invalid arithmetic operations, e.g., taking the square 
root of a negative number. 

(6) Non-terminating loops, e.g., the exit condition of a 
loop can never be evaluated to false (Note that most 
embedded programs contain non-terminating loops, 
such as ‘while true do …;’ by design). 

(7) Non-terminating calls, i.e., the control flow of a 
program never returns from the call to a function 
(because this function has a non-terminating loop for 
example). 

The price to pay for exhaustive coverage is incompleteness 
(i.e., impossibility of determining the safety of all operations 
with exact precision). In other words, the analyzer can raise 
false alarms on some operations that are actually safe. 
However, if the analyzer deems an operation safe, then 
errors cannot occur on any execution path. The program 
analyzer can also detect certain runtime errors which occur 
every time the execution reaches some point in the program. 

Traditionally, there are two complementary uses of a 
program analyzer: 

(1) as a debugger that detects runtime errors statically 
without executing the program, and 

(2) as a preprocessor that reduces the number of 
potentially dangerous operations that have to be 
checked by a traditional validation process (code 
reviewing, test writing, and so on). 

The first use is akin to traditional debugging; the developer 
tries to flush as many as bugs as he can from the code before 
it gets to verification. The second use is called certification; 
the goal is to prove the absence of errors of a certain class, 
thus, alleviating the need for testing for this class of errors. 
This requires that the static analyzer achieves a good 
selectivity - the percentage of operations which are proven 
to be safe by the program analyzer. Indeed, if 50% of all 
operations in the program are marked as potentially 
dangerous by the analyzer, there are no benefits to using 
such techniques. In the rest of the paper, we refer to these 
two different types of static analysis as certification and 
debugging. 

The question is: when should one use debugging or 
certification? On one hand, debugging is usually faster, but 
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incomplete (since it does not find all the bugs). On the other 
hand, certification is complete, but it takes quite a long time. 
So, which one should one use? The answer is both, but not 
at the same stage of the software development process. Let 
us put it in terms of the V diagram shown in Figure 1. Black 
dash arrows indicate the flow of verification while blue 
(alternating dots and dashes) arrows indicate what 
development phase is validated by what validation phase. In 
general, static analysis applies to the phases in the yellow 
(shaded) zone. 

 

Let us ignore the software detailed design phase (because it 
requires a special type of static analysis). Debugging is the 
most useful in the software coding phase. The developer can 
quickly find a range of bugs and gain some confidence that 
the software might not crash at run-time. Debugging could 
also be applied in the unit verification and software 
integration phase. However, debugging does not give you 
any coverage information (as opposed to sophisticated 
testing techniques). Therefore, it cannot measure how well 
you have tested the units or the system. Now, certification 
gives you that coverage (actually, it guarantees 100% 
coverage of all the control and data paths). In general, its 
application for unit testing requires writing (or generating) 
drivers for each of the units. This pre-required step might 
take some time, but the analyses should be fairly fast and 
precise, especially if the size of each unit is kept to a few 

thousands of lines of code. Certification can be very useful 
in the phase of system integration. Since the whole system is 
put together, the analysis only considers a coherent set of 
inputs to each function and module. This can potentially 
yield good precision. The goal of our work is to evaluate 
whether this can really be done for realistic software 
systems, especially those used in aerospace. 

3. C GLOBAL SURVEYOR 

C Global Surveyor (CGS) is a scalable, precise static 
analyzer that detects memory errors in C programs. Simply 
stated, CGS takes the source code of a software system 
written in C, builds an abstract model of it, and analyzes it to 
detect errors such as out-of-bound array accesses and de-
referencing of null pointers. CGS analysis is exhaustive (all 
possible execution paths are explored), conservative (all 
errors, including potential ones, are flagged), and does not 
require test cases or even executing the program. What 
differentiates CGS from other static analyzers is its ability to 
scale to large systems (more than 250 KLOC) and its 
precision (less than 15% false positives) [3]. Scalability is a 
minimal requirement to be useful to any NASA mission. 
Precision is critical to user acceptance, since engineers tend 
to get discouraged by the high number of warnings produced 
by static analyzers. 

Abstract interpretation 

Abstract Interpretation [5,8,9] is a theoretical framework 
developed by Patrick and Radhia Cousot that gives a 
methodology for constructing static analyses. The major 
feature of a static analyzer based on Abstract Interpretation 
consists of the mathematical guarantee that all properties 
hereby computed hold for all possible execution paths of the 
program. The core idea behind this theory is the careful use 
of the notion of approximation: all possible values a 
variable can take at a certain program point are 
approximated by a set that can be compactly represented as 
an interval in the case of scalar variables for example. All 
possible values of the variable are guaranteed to lie within 
this set, thus ensuring the soundness of the analysis. 
However, infeasible value assignments of the variable can 
be introduced because of the approximation process. This 
results into a number of false alarms, where the analyzer 
detects a potential problem at some program statement 
because of approximations in the assessment of some 
variable ranges whereas the program is safe in reality. The 
main point though is that a statement deemed as safe can 
never cause an error. This is the backbone of abstract-
interpretation-based program certification. 

Intuitively, the process of abstract interpretation is very 
similar to that of designing a system in control theory: a 
physical system is first modeled using a system of partial 
differential equations which is not directly solvable in 
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general and for which approximate numerical resolution 
schemes are employed. The choice of the approximation 
guides the construction of the static analyzer. Once an 
approximation scheme has been designed for all objects 
manipulated by the family of programs considered, we 
construct a translator from the program source into a system 
of semantic equations. These equations model the flow of 
information between the statements of the program. It is 
similar in its structure to the code generation phase of a 
compiler, where semantic equations are produced instead of 
assembly code. This phase is called the build in CGS. Any 
solution of the semantic equations is a sound approximation 
of all possible values of the program variables. Since we 
want to limit the number of false alarms caused by the 
approximation we are interested in the smallest solution of 
these equations which is guaranteed to exist (see [5,7] for 
more details). Unfortunately this smallest solution is not 
always computable or can take too much time to compute. 
Therefore we have to use heuristics that can lead us to a 
solution that is “as good as possible” (by using widening and 
narrowing operators [5,6,13]) with reasonable execution 
times. This phase is called the solve in CGS. Because of the 
sub-optimality of the solution computed during this phase, 
CGS allows the user to iterate the solve in a feedback loop, 
thus enabling a stepwise refinement of the results.  

Architecture 

Large programs as those developed for the Mars Exploration 
Program pose a number of challenges in designing an 
efficient static analyzer. Determining how objects and 
variables may be connected in memory via pointers is a 
problem known as pointer analysis. This is a very active 
research area which has produced over the years several 
good algorithms [10,11,14,18] that are able to scale to a 
million lines of code. However these algorithms cannot be 
directly applied in our case because they abstract away all 
information about positions in arrays and objects. Therefore 
their use would cause an unacceptable level of false alarms. 
CGS computes numerical relationships between the scalar 
program variables that are used for indexing arrays, 
controlling loop iterations and performing pointer 
arithmetic. These numerical relationships are hereafter used 
to perform an array-sensitive pointer analysis. Improvements 
on this analysis can be found in [15,16]. This is illustrated in 
Figure 2 where all elements of the array S.f are memory 
blocks of size 100 except the first one, thus causing a 
memory error during the execution of the loop nest.  

Classical abstract interpretation algorithms which can 
discover numerical relationships between program variables 
do not scale to the large programs we were considering. We 
tackled the time complexity problem in two different 
directions. First, we improved the scalability of existing 
algorithms using adaptive variable clustering as described 
below. Second, we designed a distributed architecture for 
CGS that enables the distribution of the static analysis 
algorithms over a cluster of machines. 

 

Figure 2. Combining numerical invariants and pointer 
analysis  

The second major problem in the design of a scalable static 
analyzer is the management of the memory. The number of 
artifacts produced by a static analyzer is tremendous. For 
example, the semantic equations of the smallest flight 
software we have analyzed (140 KLOC) required more than 
the 1GB memory available on our computers. This requires 
a smart memory management in which we can dynamically 
load and unload artifacts. We chose a database-centric 
architecture in which a relational database plays the role of a 
persistent network-transparent memory. This also makes the 
implementation of distributed analysis algorithms simpler 
since there is no stream of data between two processes on 
two different hosts, everything being centralized within the 
database. Moreover we do not have to handle mutual 
exclusion since this is already part of the database 
management system. 

Innovations 

To achieve the main goals of CGS, i.e., be scalable and very 
precise, we had to go beyond the state-of-the-art in research 
in static analysis. We now describe the six research 
innovations that had to take place to achieve our goals. The 
first two innovations work towards improving scalability 
while the last two target precision. The other two contribute 
to both scalability and precision. 

CGS relies on scalable abstract numerical domains, 
switching from one to the other in an adaptive manner. We 
rely on two main abstract domains. First, numerical intervals 
allow us to track information about integer variables. 
Second, we can also express numerical constraints between 
pairs of variables (e.g., x-y ≤ c) using the difference-bound 
matrices domain. It allows for example to track constraints 
between loop indices and variables appearing in the loop 
body. Unfortunately, this domain does not scale, and 
therefore, it applies only to small sets of variables. In [2], 
these sets are computed syntactically. We use an adaptive 
method to keep the size of those sets small. Future iterations 
of CGS should include a generalization of this technique that 
will allow us to apply even more powerful abstract domains 
(e.g., polyhedra [6]) to even smaller sets of constraints. 

Points-to graph 

S f 

20 100 

0 1 9 

Numerical invariants 

0 <= i < 10 
0 <= j < 100 

for (i = 0; i < 10; i++) 
  for (j = 0; j < 100; j++) 
    S.f[i][j] = ...; 
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CGS uses distributed algorithms. We are not aware of any 
static analyzer that can distribute the analysis over several 
processors; CGS can. This gives CGS a speed advantage 
since PC machines now come with dual processors and it 
also reduces our memory requirements (note that all 
intermediary results are stored in a common database 
residing on a disk), thus reducing the risk of time-consuming 
swapping cycles. Whereas swapping does not distinguish 
between data in memory, CGS organizes related data within 
the same table in the database. This enables efficient access 
to even very large tables through the database query engine. 

 
CGS mixes flow sensitive and flow insensitive analyses. A 
flow-sensitive analysis distinguishes between the values of a 
variable at different program point [4,6] whereas a flow-
insensitive analysis gives a global approximation of all 
possible values of a variable across the program [11,14]. 
Other static analyzers allow using one or the other. CGS 
takes a different approach since it depends on the manners 
variables are allocated. We observed that local variables 
whose addresses are not taken (used for example to index 
the elements of an array or traverse a memory block) carry 
most of the information and must be represented precisely. 
These variables are handled in a flow-sensitive manner 
while heap allocated data (which are usually subject to 
concurrent thread accesses) are treated in a flow-insensitive 
manner. 

CGS performs a mutual incremental refinement of the 
points-to (which determines memory locations, or addresses) 
and numerical information (which computes possible 
offsets). Traditionally, the points-to analysis is done before 
any analysis (especially before the numerical analysis). In 
CGS, both analyses feed off each other in an iterative 
process; each iteration performs an incremental refinement 
on the precision of the analyses until a global fixed point is 
reached. 

CGS relies on a precise representation of pointer arithmetic 
in complex data structures such as multi-dimensional arrays. 
This allows us to compute precise offsets for array elements, 
even in the case of multidimensional arrays [17]. 

CGS also performs a points-to analysis that is an extension 
of Das’ algorithm [10]. Das noticed that being precise about 
the first level (or depth) in graphs of pointers increases 
drastically the precision of points-to analysis for most C 
programs. It turns out that for software following the MPF 
legacy we need to be precise to the second or third level. We 
therefore implemented a multi-level flow points-to analysis 
that generalizes Das’ idea. 

Some of these innovations formed the basis for developing 
CGS; others were the results of constantly testing our ideas, 
and their implementation, with real NASA software systems 
such as the MPF and DS1 flight software. 

Results interpretation 

By the end of the analysis CGS has assigned a set of 
possible addresses together with an index range to each 
memory access operation of the program. The array-bound 
checking process simply scans these data and checks the 
indices against the size of the objects being accessed. We 
use a four-color code (green, orange, red, black) to present 
the results to users. If the set of indices accessed during the 
operation lies within the range of memory cells spanned by 
the object being de-referenced, the operation is deemed safe 
and colored in green. If the set of indices being accessed is 
completely disjoint from the memory area covered by the 
object, this is a definite memory violation that will occur 
whenever the operation is performed. The operation is 
flagged in red. If the set of indices being accessed is empty, 
this simply means that no execution path ever leads to this 
operation. In other words, this is dead code and we color it 
in black. In all other cases we color the operation in orange. 
An operation flagged in orange has two possible meanings: 
it is either an intermittent error that occurs for certain paths 
of execution but not for others, or it is a false alarm due to 
spurious values for the index caused by the approximation 
scheme. The tables stored in the database containing the 
numerical relationships and the points-to information can 
then be browsed during an interactive SQL session in order 
to bring out the causes of a red or orange error. This turned 
out to be quite useful in practice and this task could be easily 
performed by newly trained users from Marshall Space 
Center on software running on the International Space 
Station.  

4. APPLICATIONS OF CGS 

The MPF software family 

What we call the MPF software family consists of flight 
software systems that were developed based on the flight 
software system for the Mars PathFinder mission. The first 
to “re-use” the MPF flight software was the Deep Space One 
(DS1) mission. DS1 was not a Mars mission; it was a 
technology demonstration mission. For example, DS1 flew 
the Remote Agent experiment, which demonstrated the first 
use of planning and scheduling technology to control a 
spacecraft and the use of an ion drive in space. We analyzed 
the conventional part of the flight software (i.e., the one 
directly inherited from MPF). Since the goals of DS1 were 
different from the goals of MPF, the flight software was 
slightly different. For example, since DS1 did not land on 
any planet, the Entry/Descent/Landing module was not used 
in DS1. The second re-use of MPF was done for the Mars 
Exploration Rover mission (MER). Actually, the core of the 
development team for MER was the same as the 
development team for MPF. So, in some sense, the heritage 
from MPF was more direct than for DS1. However, the 
flight software (more than) quadrupled because of increased 
functionalities and changes in the overall design of the 
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spacecraft. For example, while both the rover and the 
spacecraft had their own software on MPF, MER went a 
different route and had the rover controlled the whole 
spacecraft, even during cruise and landing.  

From a static analysis point of view, the three systems are 
quite similar since they use the same (object-oriented even 
though they were developed in C) software architecture as 
well as some modules (such as the quaternion library). For 
example, all systems are multi-threaded and they use the 
threading package of VxWorks. Communication between 
threads is done using message queues. Even though 
messages are quite complex (e.g., they contain not only data 
but also references to callback replies), they are serialized 
into arrays of integers. Thus, in some cases, the analysis 
loses information about for example the call flow, or the 
sizes of matrices passed from one module to the next. This 
was a major source of imprecision in our analyses. Another 
important factor is the size of these applications. Overall, the 
increased complexity of the missions was reflected in the 
size of each application. As Table 1 shows, the size ranges 
from 140 KLOCs to 540 KLOCs and the number of threads 
increased from 23 to more than one hundred in MER. 

Table 1. Software complexity for MPF family. 

 MPF DS1 MER 

Size (in KLOCs) 140  280 540 

#threads 23 40 100+ 

 

 

The results for the MPF family were very good. This is not 
surprising since we design CGS to work well for this family. 
In fact, we used the MPF and DS1 software as testbeds 
during the development of CGS. It made for uneasy 
debugging since they are quite large software, but it gave us 
a very realistic “tuning” base. Overall, we obtained about 
85% precision (the percentage of checks that are classified 
with certainty as correct, incorrect, or unreachable). The 
average running times were about 1.5 hours for MPF and 
about 3 hours for DS1. The analysis of MER took much 
longer (about 24 hours). There are two major reasons for 
that. First, the sheer size of MER (540 KLOCs) is a big 
factor. This translated into storing tables (especially for alias 
information) holding two or three millions artifacts in the 
database. Loading and populating such big tables take a lot 
of time. Moreover, their storage in memory (which is limited 
to 1 GB per process on our machines) needs to be 
optimized. Unfortunately, it is mostly done at the expense of 
the analysis time. Overall, we were disappointed in the 
performance of the database we used (PostgreSQL). 
Manipulations of large tables were slow even with the use of 

index structures. It seems that with MER we reached the 
maximal workload the database can sustain, which makes 
the analysis time become non-linear. We are currently 
investigating ways to improve the database response time. 
The second reason for the slow response times lies in the 
imprecision of our alias analysis. As mentioned above, 
callback replies are cast as integers when they are placed in 
messages. This causes the analysis to lose track of them and 
therefore to make some conservative approximations about 
the binding of these replies. This resulted in creating big 
strongly connected components (SCC) in the call graph (in 
other words, recursive calls involving lots of functions). Our 
first run of CGS on MER showed an SCC of more than 
10000 functions (almost all the functions in MER since there 
are about 11588 functions in our version of MER). By 
making the analysis ignore some of the low level functions 
we were able to cut this set to 1000 functions. This is still a 
huge drain on the response time since the analysis needs to 
perform a fix-point iteration over every SCC.  

Obviously, more work is needed to refine the precision and 
the response time as flight software systems are getting 
larger and larger as well as more and more complex. For 
example, the flight software system for MSL (the Mars 
Science Laboratory mission) is expected to reach 1 MLOCs. 
Yet, we are quite happy with the current results, especially 
when we compare them with the results we obtain using a 
commercial static analyzer as described in [3]. We can now 
analyze the whole system without having to cut it in pieces. 
Moreover, our processing time for the whole system (540 
KLOC) is of the same order as the average processing time 
of the commercial analyzer for a 40 KLOC-size slice.  

Shuttle and Space Station Flight Software 

The application of CGS to flight software for the shuttle and 
the International Space Station (ISS) is part of a technology 
infusion effort. Our goal is to teach NASA developers to use 
CGS and adopt it for regular use on their projects. In this 
particular case, three developers from the Marshall Flight 
Space Center (MSFC) came to NASA Ames, got trained in 
using CGS, and used CGS on flight software systems they 
had developed at MSFC. Overall, we analyzed five modules. 

(1) The Application Processor (AP) module is part of the 
flight software for the Advanced Video Guidance 
Sensor (AVGS), which flew as experiments on two 
Space Shuttle missions and will be the primary sensor 
for the close-proximity operation in the DART 
mission. The DART mission seeks to advance the state 
of the art in safe and reliable autonomous rendezvous 
capabilities at NASA. The AP module represents about 
12 KLOCs of C code. 

(2) The IO Processor (IOP) module is also part of the 
AVGS. It represents 7 KLOCs of C code. 
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(3) The goal of the Materials Science Research Rack 
(MSRR) aboard the ISS is to offer capabilities to 
facilitate a wide range of materials science 
investigations. For example, the facility will provide 
the common subsystems and interfaces required for the 
operation of experiment hardware, accommodate 
telescience capabilities, and provide the capability for 
simultaneous on-orbit processing. This application 
consists of 55 KLOCs of C code. 

(4) The Urine Processor Assembly (UPA) is part of the 
life support in the ISS. The UPA controller consists of 
47 KLOCs of C code. 

(5) Finally, the last module is the boot loader 
(BOOTLDR) for the shuttle engine controller. It consis 
of 7 KLOC of C code. The MSFC development team is 
also in the process of using static analyzers (including 
CGS) to analyze the whole controller. However, we do 
not have results for this experiment. 

The results for these modules were neither good nor bad. 
First, the response times of these analyses are very 
satisfying. Each analysis was only a matter of minutes on 
laptop (i.e., machines that are slower and have less memory 
than the desktops we use for the analysis of the MPF 
family). Second, the precision was quite good (around 85%), 
but it revealed some flaws in CGS. For example, structures 
with bit fields were not treated properly. Moreover, we had 
problems with pointers to physical hardware devices. The 
analysis cannot find any size information and it therefore 
assumes that the size is zero. This deficiency points out the 
need for user information. We are in the process of 
implementing an interface that a user could use to give such 
information. This experiment was also a good opportunity to 
get feedback from CGS users who are not part of the 
development team. It gave us some useful usability data. For 
example, it is clear that CGS needs to provide type 
information when the results are scanned by the tool user. It 
was very cumbersome for users to track the type information 
across code and header files. We are therefore implementing 
a function that dumps type information in the database, 
thereby making it directly available to a user. 

Space Station Biological Experiment Software 

This experiment was the opportunity for us to try CGS on a 
different type of software. The Habitat Holding Rack (HHR) 
software is not a flight software system in the sense that it is 
not controlling a spacecraft or a rover; it controls biological 
experiments done on the International Space Station. The 
HHR is the central part of the biological and scientific 
experiments to be conducted on-orbit and on the ground for 
the UF-3 and future missions. The Biological Research 
Project Rack Interface Controller (B-RIC) and Centrifuge 
Rack Interface Controller (C-RIC) are the command and 
control components of the HHR.  The C-RIC being 
unavailable at the time, CGS was applied only to the B-RIC. 

The B-RIC formats telemetry data received from Payloads 
for download to the ground, and creates HHR and Payload 
Health and Status (H&S) data for transmission to the ISS. 

The B-RIC software is about 50 KLOCs of C code. The 
software is made of five modules (each running on a 
different board within the Habitat Holding Rack) that were 
analyzed separately:  

(1) Video Digitalization Compression Card (VDCC). This 
module implements the video controller for monitoring 
the biological experiments. It is the most complex 
module of the software. It contains 32 KLOCs.  

(2) High Rate Link Card (HRLC).  This module manages 
the communications between the HHR and the ground 
control on Earth.  It contains 16 KLOCs.  

(3) Serial Card 1553 (SC1553).  This module manages the 
communications between the HHR and the astronaut 
laptops via the 1553 synchronous network of the ISS.  
It contains 9 KLOCs.  

(4) Serial Card (SERC).  The SERC software module is 
the serial communications link to the HHR.  It contains 
a bit less than 1 KLOCs.  

(5) Main Controller Card (MCC).  This software module is 
the main controller for the HHR.  It contains 19 
KLOCs. 

The results of the analyses are quite surprising for us and 
show that we need to adapt CGS to this type of software. For 
example, the precision is 30%, which is quite disappointing. 
Moreover, about 35% of the checks classified as certain 
errors are not errors.  After further (manual) investigation, 
we found that this is due to hardware pointers. The isolation 
of the source code verification with CGS without 
attachments to external devices and/or interfaces shows up 
as repeated errors for all instances where there is no 
connectivity.  For example, in the SERC Module, the 
Payload Manager Function queries the Payload Table.  
Because that Function depends on an external link for 
execution, the CGS Tool tagged all instances of calls as red 
errors. Anyway, the analysis times are also quite 
disappointing given the sizes of the modules being analyzed. 
In general, the analyses took from 30 minutes to 2 hours, 
except for the VDCC modules which took 14 hours.  We are 
still in the process of analyzing these modules to find out 
what causes such long analysis times. Given that these 
analyses were performed on a laptop with poor (memory and 
processing speed) performances, our current guess is that 
CGS spent most of its processing time doing garbage 
collection. This assumption needs to be verified. 
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5. LESSONS LEARNED 

The first lesson is that scaling up to large programs requires 
a fine-grained control of the dynamic allocation of data in 
the analyzer. In our case, the use of a garbage collector frees 
us from having to manage all de-allocations, but it forces us 
to be smart in our use of memory allocation. Indeed, the 
garbage collector used in CGS has a limit of 1 GB, which 
cannot be changed. Therefore, we need to ensure that we are 
not allocating more than 1 GB of memory, knowing that the 
garbage collector might allocate larger chunk of memory 
than is needed by the data we manipulate. Of course, the size 
of the memory blocks allocated by the garbage collector can 
be set to (almost) any arbitrary size. However, reducing the 
size of the blocks also triggers more frequent calls to the 
garbage collector, thus impacting the response time of the 
analysis. 

The second lesson concerns the use of a database to manage 
permanent artifacts. In our original mindset, the SQL 
database operations could be used to efficiently compute 
functions on the artifacts (e.g., alias tables, call table, and so 
on) in the database, rather than having to pull the data out of 
the database, compute the function, and dump the results in 
the database again. This turned out to be an unrealistic 
expectation. Database operations are too slow for that. So, 
the biggest gain in using a database is that it can 
automatically handle distributed requests. Finally, it might 
be possible to optimize the database accesses by organizing 
large tables into hierarchies of small tables. However, this is 
possible only if the keys used to access data in the tables are 
consistent throughout the analysis.  

The third lesson is that distributing the analysis does not 
always pay off, unless you can run the analysis on a truly 
parallel machine. Indeed, in many phases of the analysis the 
network access times (for loading or storing analysis 
artifacts or synchronizing with other processes) outweigh the 
processing time required by the analysis. Therefore, unless 
processes can communicate without going through a 
network, the analysis might be slowed down. Typically, we 
observed that the gains from distributing the analysis level 
off when we use more than four processors (which 
represents two machines since each of our machines have 
dual processors). Finally, using PVM to distribute the 
analysis really hampered the debugging of CGS.  It was 
quite hard to pinpoint crashes because most analysis 
processes died without giving any information back to the 
master process. 

6. CONCLUSION 

In this paper, we have given a short introduction to C Global 
Surveyor (CGS), a static analyzer based on Abstract 
Interpretation. CGS can find array-out-of-bound and null 
pointer de-reference errors in embedded C programs. We 

also have reported on the use of CGS on real NASA 
software systems ranging from the flight control software for 
three JPL missions (MPF, DS1, and MER) to software 
controlling experiments on the International Space Station. 
We observed that CGS scales without producing many false 
positives to the large JPL applications (over 500 KLOCs). 
We expected this result since we designed our analysis 
algorithms to work well with the software following the 
MPF family. Similarly, the low precision and response times 
of CGS in the analysis of the Habitat Holding Rack software 
are not surprising; we did not specialize CGS for this type of 
software. Anyway, we conjecture that the slow response 
times may be due to running the analysis on under-
performing hardware (laptop with low processing speed and 
little memory capacity). However, as of now, we cannot yet 
pinpoint what coding practices caused the precision 
problems. Still we are confident that, after studying the 
results closer we can tune CGS to work well for all these 
applications, and therefore, be applicable to lots of NASA 
missions.  
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